
EUV IMAGING SPECTROMETER

Hinode
EIS SOFTWARE NOTE No. 22

Version 1.2 2017 Sep 13

EIS Quicklook Data Processing and Timeline Database Retrieval

John Mariska
George Mason University

Department of Physics and Astronomy
4400 University Drive

Fairfax VA 22030
USA

jtmariska@gmail.com

1 Overview

The purpose of this software note is to document the software that manages EIS quicklook data
processing. This should allow individuals other than the author to modify the code should that
be necessary. It also documents the method used to transfer the EIS planning database files from
ISAS to NRL and from there to the EIS SolarSoft distribution.

2 Quicklook data processing

Quicklook data processing takes place on the reformatting computers at ISAS. Since the available
data are often incomplete, the software regularly runs into difficulty and either crashes or hangs,
making it difficult to automate the task. To overcome this problem, the program eis do quicklook.py
manages quicklook data processing. This program constructs the necessary command string to
spawn to the operating system and then monitors the resulting process. If it detects any of a
number of known failure modes, it takes appropriate action. If the program detects an unknown
failure mode, it tries restarting the process before finally giving up after 15 attempts. The quicklook
data files produced are automatically copied to the appropriate locations on DARTS, and leftover
files are regularly purged from the working directories. Note that if the program needs to restart
many times, it can take up to an hour to run to completion.

The program runs daily at 23:05 JST via a cron task that executes the shell script eis quicklook.csh
in the $HOME/bin directory on the reformatting computer. At the present time the program must
be run in the directory $HOME/work/localdata/sdtp/hpw/decomp new, and the shell script takes
care of that as well as copying the log file that the program produces to a web-accessible location
on DARTS (http://darts.isas.jaxa.jp/pub/solar/solarb/eis/staging/logs/quicklook/).

Generally, the cron task retrieves the most recent data in a timely manner. Under excep-
tional circumstances, the program can be run manually, either by invoking the cron script in the
$HOME/bin directory or by going to the directory where the program resides and executing the
python file. The documentation at the top of the listing in §2.2 shows the format for invoking the
program. Note that the date must be entered in the format shown, dd-mon-yyyy, where mon
may be either the three letter abbreviation for the month on the two digit number for the month.

The quicklook reformatting software can be run by using ssh to connect from ope-gw to
rfsb1.reformat.isas.jaxa.jp (133.74.197.31) as user sbukeis. Contact an ISAS system administra-
tor to arrange for access.

2.1 Shell script Listing

#!/bin/csh

(2009-Jun-25) JTM: initial test version

(2012-Aug-30) JTM: added copy of timeline to darts

(2012-Dec-11) JTM: moved timeline copy to own script

(2017-Sep-13) JTM: logfile name change

cd $HOME/work/localdata/sdtp/hpw/decomp_new

set logfile = quicklook_log_‘date ’+%Y%m%d_%H%M’‘.txt

./eis_do_quicklook.py >& $logfile

if (! -z $logfile) then

1

cp $logfile /soda/solarb/eis/staging/logs/quicklook

endif

Do a little cleanup

cd /soda/solarb/eis/staging/logs/quicklook

find . -name ’quicklook*.txt’ -mtime +10 -exec rm -f {} \;

2.2 Program Listing

#!/usr/bin/env python

"""

eis_do_quicklook.py - automated quicklook processing

One Program to rule them all, One Program to find them,

One Program to bring them all and in the darkness bind them

In the Land of ISAS where the Shadows lie.

SYNOPSIS

./eis_do_quicklook.py [dd-mon-yyyy]

DESCRIPTION

This Python script runs the EIS quicklook processing software for

either the selected day or by default the previous day. The

created FITS files are copied to the appropriate area on DARTS. In

its present form, this script can only be run from this

directory. The script is normally invoked by the cron script

~/bin/eis_quicklook.csh. When that script is used, a log file is

written to the EIS staging area on DARTS:

(http://darts.isas.jaxa.jp/pub/solar/solarb/eis/staging\

/logs/quicklook).

The script attempts to recover from a number of failure modes

exhibited by the quicklook software. If for some reason it

discovers a new failure mode, the script will give up after

restarting the quicklook software 15 times.

EXAMPLES

./eis_do_quicklook.py 12-Jun-2016

./eis_do_quicklook.py 12-06-2016

./eis_do_quicklook.py

TODO

Add the ability to run from any directoy.

HISTORY

(2009-Jun-24) JTM: Initial production version.

(2010-Mar-03) JTM: Additional cleanup.

(2014-Sep-02) JTM: Added kill_subs call when restarts too many times.

(2017-Jan-11) JTM: Make date handling more robust.

CONTACT

John Mariska, jmariska@gmu.edu, jtmariska@gmail.com

"""

import os

import sys

2

import time

from dateutil import parser

import commands

import shutil

def mk_batch_script():

cmd1 = "eis_quick_look, ’%s’, /get_data\n\n" % (day)

cmd2 = "eis_quick_look, ’%s’, /restart\n\n" % (day)

ip = open(’eis_do_quicklook_in.txt’, mode=’w’)

ip.write(’; eis_do_quicklook_in.txt\n’)

ip.write(’; count: %d\n’ % (count))

ip.write(’; ’ + time.asctime() + ’\n\n’)

ip.write(’print, "* * * Batch start * * *"\n\n’)

if restart:

ip.write(cmd2)

else:

ip.write(cmd1)

ip.write(’print, "* * * Batch end * * *"\n\n’)

ip.write(’exit\n’)

ip.close()

def kill_subs(pid):

For now, assume there are just two processes below pid to

worry about, the SSW script and the IDL process. This could

be a mess if there are more.

pscmd = ’ps --format pid --no-headers --ppid %s’

kstring = ’/usr/bin/kill -s KILL ’

pid1 = commands.getoutput(pscmd % (str(pid)))

if pid1:

pid2 = commands.getoutput(pscmd % (pid1))

else:

pid2 = ’’

Kill in reverse order one at a time for now

print ’Killing processes %s %s %s’ % (str(pid), pid1, pid2)

if pid2: os.system(kstring + pid2)

if pid1: os.system(kstring + pid1)

if str(pid): os.system(kstring + str(pid))

Remove IDL start script

sswfile = ’/home/sbukeis/ssw_idl.’ + pid1.strip()

if os.path.exists(sswfile):

print ’Removing ’ + sswfile

os.remove(sswfile)

* * * M A I N * * *

print ’Started at ’, time.asctime()

if len(sys.argv) == 2:

dt = parser.parse(sys.argv[1], dayfirst=True)

day = dt.strftime(’%d-%b-%Y’)

else:

yesterday = time.time() - 24*60*60 - 4*60*60 # adjust as needed for cron use

day = time.strftime(’%d-%b-%Y’, time.localtime(yesterday))

Remove any leftover push scripts

if os.path.exists(’push_files.sh’): os.remove(’push_files.sh’)

First script gets data

count = 1

maxcount = 15

restart = False

3

mk_batch_script()

pid = os.spawnlp(os.P_NOWAIT, ’./eis_do_quicklook.sh’, ’eis_do_quicklook.sh’)

print ’PID: ’, pid

tlim = 90.0

len = 0

while True:

time.sleep(tlim)

newlen = os.stat(’eis_do_quicklook_out.txt’).st_size

print time.asctime()

print ’Size: ’, newlen

line = commands.getoutput(’tail -1 eis_do_quicklook_out.txt’)

if newlen > len: # still growing, keep going

len = newlen

continue

elif count > maxcount: # may be stuck in a loop

print ’Too many restarts. Aborting.’

kill_subs(pid)

break

elif line == ’* * * Batch end * * *’:

if os.path.exists(’push_files.sh’): # really are done!

print ’Completed’

print ’Script called %d times’ % (count)

pushlen = os.stat(’push_files.sh’).st_size

if pushlen > 0:

print ’Running push_files.sh’

os.system(’./push_files.sh’)

else:

print ’Problem with push_files.sh: zero length’

break

else: # might have crashed back to shell, restart

len = 0 # outfile started again

restart = True

count = count + 1

mk_batch_script()

pid = os.spawnlp(os.P_NOWAIT, ’./eis_do_quicklook.sh’,

’eis_do_quicklook.sh’)

print ’Restarting after apparent IDL exit’

print ’New PID: ’, pid

continue

elif line == ’Segmentation fault’: # crashed back to shell, restart

len = 0 # outfile started again

restart = True

count = count + 1

mk_batch_script()

pid = os.spawnlp(os.P_NOWAIT, ’./eis_do_quicklook.sh’, ’eis_do_quicklook.sh’)

print ’Restarting after IDL exit on Segmentation fault’

print ’New PID: ’, pid

continue

else: # must be stalled, restart

kill_subs(pid)

len = 0 # outfile started again

restart = True

count = count + 1

mk_batch_script()

pid = os.spawnlp(os.P_NOWAIT, ’./eis_do_quicklook.sh’, ’eis_do_quicklook.sh’)

print ’Restarting after stalling’

print ’New PID: ’, pid

continue

Clean up old directories and log files

ndays = 10

day_to_rm = time.time() - ndays*24*60*60

day_to_rm_str = time.strftime(’eis_fits_%Y%m%d’, time.localtime(day_to_rm))

if os.path.exists(day_to_rm_str): shutil.rmtree(day_to_rm_str)

4

lfile = time.strftime(’quicklook_log_%Y%m%d.txt’, time.localtime(day_to_rm))

if os.path.exists(lfile): os.remove(lfile)

dir_str = time.strftime(’%Y%m%d’, time.localtime(day_to_rm))

full_path = ’/home/sbukeis/work/eis/localdata/sdtp/md/’ + dir_str

if os.path.exists(full_path): shutil.rmtree(full_path)

full_path = ’/home/sbukeis/work/eis/localdata/sdtp/fits/mission/’ + dir_str

if os.path.exists(full_path): shutil.rmtree(full_path)

print ’Finished at ’, time.asctime()

print ’Restarted %d times’ % (count - 1)

3 Timeline database retrieval

The EIS timeline data in Japan are handled in a somewhat peculiar manner. The master timeline
resides on the EIS planning computer at ISAS. It is either generated there or copied to that computer
by the remote planner. Because of security concerns, the files can not be rsynced from that computer
to NRL or Oslo. The planning computer, however, can be reached from the reformatting computers
and those computers can write files to a publicly available directory on DARTS. The final task run
by the planner on the ISAS EIS planning computer (∼/scripts/db backup.sh) includes a copy of
the planning database files to a directory on the planning computer that is away from the standard
storage location (∼/mariska/timeline). Once a day at 19:35 JST, the cron task listed below on the
reformatting computer then copies the files from there to DARTS. The timeline files are located at
http://darts.isas.jaxa.jp/pub/solar/solarb/eis/staging/timeline. This is very kludgey,
but has worked well for quite some time.

#!/bin/csh

eis_timeline.csh

(2012-Dec-11) JTM: copy timeline to darts

copy timeline to darts

Note master site is $HOME/eisco/planning_db/timeline_db.

This may be safer, since no poss of user doing planning on it.

cp -rp $HOME/eisco/mariska/timeline/* /soda/solarb/eis/staging/timeline

A Revision History

Revision Date Author(s) Description

1.0 2016 May 18 John Mariska Creation
1.1 2017 Jan 12 John Mariska More robust date handling in code and additional

info on running the software.
1.2 2017 Sep 13 John Mariska Minor modification to shell script so that it can be

run more than once a day.

5

