CORONAL DIAGNOSTIC SPECTROMETER

SoHO

CDS SOFTWARE NOTE No. 10

Version 1.1

6 June 1994

THE UIT DATABASE SYSTEM

W. B. Landsman
ST Systems Co.

Edited by:
W. Thompson
Applied Research Corporation
NASA Goddard Space Flight Center
Laboratory for Astronomy and Solar Physics
Code 682.1
Greenbelt, MD 20771, USA

William.T.Thompson.1@Qgsfc.nasa.gov
pal::thompson

Editor’s Note: This document was incorporated as a CDS software note from the IDL Astronomy
User’s Library. Fzcept for the header, the document has not been changed in any way. The reader
should be aware that only the software component has been implemented by CDS, and the actual
databases referred to—particularly those in the Appendiz at the end—do not exist on any CDS
computers. Also, some routines not applicable to CDS may not be implemented. The dates and
version numbers on the cover page are specific to CDS and do not necessarily reflect any changes
made to the document by the UIT team.

One important change that has been made to the software is that DBCRFEATE now supports
an /EXTERNAL keyword, which signifies that the database is to be written in a host-independent
external format.

1 INTRODUCTION

This document describes the use of an IDL database system that has been implemented on the UIT
computes. The database software was designed by Don Lindler of the GHRS group, and has been
adopted by the GHRS and TUE groups. The software is noteworthy for its speed and versatility. An
example of its speed is provided by a position search of the 245,000 entries in the IRAS point source
catalog, which can be performed in a couple of seconds on a SparcStation 2. The versatility arises
because the database software shares the IDL programming, plotting, and image display syntax.
The software will run on any computer that has IDL installed, and has been used on Vaxes, Unix
workstations, and PC/Windows machines.

In discussing the database software, it is useful to have in mind a book copy of, for example,
the Yale Bright Star Catalogue 5th Edition (called ‘YALE_BS’ in the computer database). The
data for a specific star is contained in one row, while column headings are placed at the top of a
page. Similar concepts apply to the computer database, and the following terms will be referred to
constantly.

entry a “row” of a catalogue. The YALE_BS catalog contains 9110 entries.

item a “column” of a catalogue. The YALE_BS catalog contains 41 items including ‘HD’, ‘NAME’,
and ‘V_MAG’.

value the field corresponding to a specified entry and item. It can be either numeric or a character
string. For entry 1708 of the YALE_BS catalog, item ‘NAME’ contains a value of ‘ALP
AUR’ and item ‘V_MAG’ contains a value of 0.08. It is possible for an item to be multiple
valued. For example, the ‘COPERNICUS’ database contains Copernicus spectra of 40 hot
stars. In this case, the value of the item ‘FLUX’ for a particular entry consists of 2250
numbers specifying the relative flux between 1000 and 1450 A.

The managers of the IDL database would greatly profit by suggestions from the users. In
particular, the managers would appreciate hearing about (1) astronomical catalogues that should
be added to the database (2) improvements needed in the help files of a database or items within
a database, (3) catalogues that should be linked together via pointers (4) items that should be
indexed. (As explained below, indexed items require more disk space, but can be searched much
more quickly than non-indexed items.)

Section 2 of this document describes the six “core” database procedures, which may be all that
are ever required by the typical user. Section 3 discusses five more special-purpose procedures and
the concept of “pointers.” Section 4 gives instructions on how to create or modify a database, and
need only be read by would-be experts. This document is most effectively read while sitting at a
terminal, where the numerous examples can be worked out.

2 DATABASE FUNDAMENTALS

All of the database procedures begin with the letters “DB”. As with all other MOUSSE procedures,
help on a specific database procedure can be obtained by typing ?<procedure_name>. These help
files provide more detailed information than is given in this document. Although there exist a total
of 35 database procedures, the following six “core” procedures will often be all that are required
by the user.

DBOPEN Open a catalogue for subsequent processing.

DBHELP Display information on catalogues, or items within a catalogue.
DBFIND Find entries meeting specified search criteria.

DBPRINT Print catalogue information of specified entries and items.
DBEXT Extract specified values as vectors for subsequent processing with IDL.

DBCLOSE Close a catalogue.

In addition to the “core” procedures above, there are seven other database procedures that may
be used occasionally.

DBCIRCLE GSearch for entries in positional catalogue within a specified radius of a specified
center

DBGET Use instead of DBFIND when search values are in an IDL vector.
DBMATCH Find one entry for each element of a vector of item values.
DBSORT Sort a list of catalogue entries by any item.

DB_OR Remove duplicate values from a list of entries.

IMDBASE Find entries within an image with a specified FITS header

TVDBASE Overlay position of entries within image with a specified FITS header

The rest of the 35 database procedures are either low-level, or used for building databases (see
section 4).

2.1 DBOPEN and DBHELP

The database commands discussed here should all be entered in response to the IDL prompt. To list
the names of the online catalogues, one simply types DBHELP. Alternatively, the command DBHELP, 1
will print a one-line description of all catalogues, and the command DBHELP,<name> will print a
description of a specified database. Before any further work can be done with a database, it must
be opened with the DBOPEN command. If later, one decides to work with another catalogue, then
the DBOPEN command must be used again. DBOPEN will close the first database and open the
second. Once a database has been opened, DBHELP is used to give the name, type of data, and
brief description of items within the database. (If an item is multiple-valued, then a number in
parentheses will appear beside the item name.) The command DBHELP, 1 will also show which items
are indexed, and thus much quicker to search on. The following example illustrates these ideas:

$IDL !Get into IDL

DBHELP ;List the names of all databases

DBHELP, 1 ;Give a one-line description of all databases

DBHELP, ’PTL’ ;Print a brief description of the ASTRO Program Target
List (PTL) database

DBOPEN, ’PTL’ ;Open the PTL database

DBHELP ;Print the names of all items in the PTL

DBHELP, 1 ;Give the datatype and a brief description of all items and
show which ones are indexed

DBHELP, ’ JOTFID’ ;Print a description of the JOTFID item

DBOPEN, ’SAO’ ;Close the PTL catalogue and open the SAO catalogue

DBCLOSE ;Close all catalogues

The output device of all the database procedures is controlled by the TEXTOUT keyword. The
default output device (TEXTOUT=1) is the user’s terminal. Set TEXTOUT=3 to direct output to
a disk file with a default name, or set TEXTOUT = ‘“filename’, to specify the output file name. The
non-standard system variable !'TEXTOUT can also be used instead of the TEXTOUT keyword.
The documentation for the TEXTOPEN procedure gives a complete description of the TEXTOUT
keyword.

For example, if no database has yet been opened, then the following commands would write a
one-line description of all catalogues to a disk file.

DBHELP,1,TEXT = 3 ;Write a one line description of all catalogues to a disk file
DBHELP.PRT
DBHELP,1,T="DB.TXT’ ;Write a one line description to a file DB.TXT

2.2 DBFIND

The function DBFIND is used to select the entries of interest in a catalogue. The general format
of the DBFIND call is

LIST = DBFIND(‘SEARCH CRITERIA’,[SUBLIST])

LIST is an IDL longword output vector containing the desired entry numbers. It is subsequently
used either by DBPRINT to display the desired entry values, or by DBEXT to extract item values

for plotting or analysis. SUBLIST is an optional input parameter that restricts the search to a
subset of the catalogue. SEARCH_CRITERIA is a string or string array that contains the desired
search items. Search criteria can be selected in seven different ways. For example, the JOTFID
item (Joint Target File ID) in the PTL database could be searched in the following ways:

Search Format Example
(1) ITEM = value JOTFID = 8102
(2) ITEM = [valuel,value2] JOTFID = [8104,8105]
(3) ITEM = min_value < ITEM < max_value 7000 < JOTFID < 7999
(4) ITEM > min_value JOTFID > 3000
(5) ITEM < max_value JOTFID < 2999
(6) ITEM = value(tolerance) JOTFID = 5000(2000)
(7) ITEM ;non-zero value JOTFID

The > and < signs in (3) — (5) are interpreted as less than or equal to (i.e. example (5) would
include all jotfid numbers up to and including 2999).

You can use two or more search criteria at the same time by separating the individual criteria
with commas. For example, to find the UIT observations of normal galaxies (6000 < JOTFID <
6999) in the ASTRO target list,

dbopen, *PTL’ ;Open the Program Target List
list = dbfind(’U=U,B8000 < jotfid < 6999°) ;Specify UIT target, JOTFID range

Suppose, one now one wants to further restrict the list found above to targets in the northern
hemisphere. The DBFIND search could be repeated adding the additional search criterion >dec >
0’. However, it would be quicker to restrict the search for positive declinations to the entries that
have already been selected and stored in the vector LIST:

newlist = dbfind(’dec>0’,list)

When using DBHELP to display the contents of a catalogue, certain items are identified as
being “indexed.” Indexed items can be searched much faster than non-indexed items. Use indexed
items whenever possible in your search criteria. (The reason that not every item is indexed is that
such items require more disk space.) For example, one could find the star @ Aur in the SKYMAP
star catalog as follows:

dbopen, ’skymap’ ;Open the SKYMAP catalog

list = dbfind(‘name = alp aur’) ;Slow non-indexed search for the star name

but the search will take a couple of minutes since NAME is not an indexed item. On the other
hand, a search on the HD number will be almost instantaneous.

list = dbfind(‘hd=34029°) ;Fast indexed search on the HD number

The most commonly used items with DBFIND are probably those pertaining to position. All
of the positional databases will have an indexed item named RA in decimal hours, and an indexed
item named DEC in decimal degrees. In addition, another set of non-indexed items may exist (e.g.
RA_1950, DEC_1950) which store the position as character strings. These latter items are used for

pretty output with DBPRINT, and should not be used with DBFIND. A nice feature of DBFIND is
that it recognizes numbers separated by colons as being in sexigesimal format (e.g. 45:30 = 45.5).
For example, to determine if 3C273 is an IRAS source, we could search on the known position with
a 15"(= 1°) tolerance:

dbopen, ‘iras_psc’ ;Open the IRAS point source catalog

list = dbfind(’ra = 12:26:33.3(0:0:1), ;Search on known position of 3C273
dec=2:19:43(0:0:15)’)

dbprint,list, ‘*’ ;Print all items in table format

The colons can be used with any item, although, of course, the use of sexigesimal format is most
common with RA and Dec. The help file for DBFIND can be read to learn how to use slashes and
dashes to encode the date and time. However, be aware that arithmetic operations cannot be done

within the search_criteria string of DBFIND; if the right ascension is 30 degrees, then conversion
to hours must be done before the DBFIND call

list = dbfind(’ra=30/15.°) JILLEGAL statement - do not try this!

String searches are matched whenever the supplied string appears anywhere in an item. Thus,
in the YALE_BS catalog

list = dbfind(’name = tau’)

will find all stars with the three characters ‘tau’ appearing anywhere in their name. The search is
case insensitive and leading and trailing blanks are ignored. One can also use the same item twice
in a search. Thus

list = dbfind(‘name = tau,name=eri’)

will find all stars (nine of them!) with the substrings ‘tau’ and ‘eri’ in their name.

2.3 DBPRINT

DBPRINT will display selected fields of database on the device specified by the TEXTOUT key-
word. The basic calling sequence is:

DBPRINT, LIST, ITEMS, TEXTOUT = , FORMS =

where LIST is a vector of entry numbers (e.g. as found with DBFIND), and ITEMS is a list of
the desired items to print. One line of output will be generated for each entry printed, and fields
will be printed with appropiate headings. (Page overflow will occur if the item list doesn’t fit on a
single line — 80 characters for a typical terminal and 132 characters for a line printer). The list of
items to be used can be specified in six different ways:

dbprint,list Display default items
dbprint,list,’’ ;Interactively select items via menu
dbprint,list,’jotfid,id1,id2’ ;Items are in a single string

dbprint,list,[’jotfid’,’ id1’,’ id2’] ;Items are in a string array
dbprint,list, ’$FILENANE’ ;Items are in a disk file named FILENAME,
(one item per line)

dbprint,list,indgen(3)+1 ;Use items 1-3, (Ttem 0 is always the entry
number)
dbprint,list, ’*’ ;Select all items and print in table format

An useful variant of the first form of DBPRINT is to pass either an undefined variable or an empty
string as the ITEMS parameter to DBPRINT. A full screen menu will appear, and the items to
be printed can be selected with the mouse. The items selected will be returned in the ITEMS
variables, so that one can skip the menu on subsequent calls to DBPRINT.

f = ;Define an empty string

dbprint,list,f ;Interactively select items via menu, print,
and return items list in f

dbprint,list,f,text=3 ;Print to a disk file with items previously
selected

The list of entry numbers can be either the output of DBFIND, or a scalar or vector directly
specified by the user. Set LIST = —1 to print all entries. Entry numbers begin with 1, so that
supplying an entry number of zero may give nonsensical results.

dbopen, ’ptl’ ;Open the PTL database

items = indgen(9)+1 ;Select first 9 1items for printing
dbprint,132,items ;Print selected 1tems of entry 132
dbprint,indgen(50)+1,items ;Print selected items of first 50 entries
dbprint,-1,items ;Print selected item, all entries

2.4 DBEXT

DBEXT allows one to extract item vectors from a database for plotting or subsequent analysis. Its
basic calling sequence is

DBEXT,LIST,ITEMS,V1,V2.,...V12

The parameters LIST and ITEMS have the same meanings as in the DBPRINT command. The
outputs V1,V2,...are the IDL variable names to be filled with the values of the specified items.
For example, to produce a scatter plot of the right ascension and declination of all targets in the

PTL:

dbopen, ’ptl’ ;Open the Program Target List

list = dbfind(’ra<24.’) ;Solar system objects have RA=99.9
dbext,list,’ra,dec’,r,d ;Extract RA and dec
plot,r,d,psym=3 ;Plot RA vs. Dec for all Astro targets

Thanks to WUPPE and BBXRT, the observed distibution of targets shows some concentration
toward the galactic plane.

For another example, de Lapparent et al. (Ap. J. (Letters), 302, L1) have used the CFA
redshift survey to display a “slice of the universe”. Figure 1 in their paper (the so-called “dancing
man”) was obtained by plotting galaxy velocity (distance) versus right ascension. The galaxies
were restricted to the declination wedge 26.5° < ¢§ < 32.5° , and also mp < 15.5, and V < 15000
km s~! . The following IDL statements will quickly create a rough version of this plot.

dbopen, ’REDSHIFT’ ;Open the CFA Redshift Catalogue

list = dbfind(’26.5 <dec< 32.5, bmag< 15.5, ;Select galaxies meeting search criteria
1 <vhelio< 15000°)

dbext,list,’ra,vhelio’,ra,vhelio ;Extract RA and velocity vectors
plot, ra, vhelio, psym=3 ;Plot projection of galaxies on the RA-Vhelio
plane

In this example, galaxies for which a redshift has not been determined were assigned a velocity of
zero. Therefore, it was essential that the search on the VHELIO item had a lower limit of 1 and
not 0.

It is possible for an item to contain more than one value for a particular entry. This is often
true for databases containing spectra, where the wavelength and flux items will be multiple-valued.
For example, to plot a spectrum of Uma (HR 5191) from the TD-1 spectrophotometric catalog:

dbopen, *TD1 SPEC’ ;Open spectrophotometric catalog

dbhelp, 'FLUX’ ;Read how to create wavelength array

w = [1360. + findgen(60)*20., 2740.] ;Waovelength array is 1360 A ~ 2540 A at 20
A resolution plus 2740 A photometer

list = dbfind(’bsmo = 5191°) ;Find entry number for Uma

dbext,list,’flux’,f ;Extract 61 element flux vector

plot,w,f ;Plot flux vs. wavelength

The TD1_SPEC catalog does not include an item for the wavelength array because it is the same
for each entry; instead the help file for the item FLUX tells how to construct the wavelength array
in a single IDL statement. Note that if more than one entry number were supplied to DBEXT,
then the output flux vector would be 2 dimensional, with the first dimension containing the 61 flux
values for a particular entry.

The DBEXT command can be combined with the WHERE function of IDL to perform searches
on fields not directly present in the catalogue. As an example, we will use the IRAS point source
catalog to search for infrared selected high luminosity galaxy and quasar candidates (AGNs).

Following Low et al. (1988) (Ap. J. (Letters), 327, L41) we set our search criteria to be (1) a
25 to 60 micron flux ratio of 0.25 < F25/F60 < 3, (2) a galactic latitude greater than 30° , and
(3) no previous identification from a stellar catalog. (As a prerequisite for criterion (1), the sources
must have measurable fluxes at 25 and 60 microns.) Search criterion (1) cannot be performed using
DBFIND since F25/F60 is not an item in the database. Instead one must extract the F'25 and F'60
vectors with DBEXT, form the ratio, and use the WHERE function to select the desired range.
Similarly, since the catalogue does not include galactic coordinates, one must DBEXT the RA and
DEC, and then convert to galactic coordinates. Criterion (3) presents a minor problem because

DBFIND does not allow a “not equal to” search criterion; however, one can explicitly search on
the catalog identifications (item IDTYPE) that are not stellar (IDTYPE = 2).

dbopen, ‘iras_psc’ ;Open TRAS point source catalog

list = dbfind(‘idtype =[0,1,3,4], ;Not in stellar catalogs, detected at 25 and 60

25 _fqual>2, 60_fqual>2’) microns
dbext,list, ‘60 flux,25 flux’,£60,f25 ;Extract 25 and 60 micron flux vectors
ratio = £25/£60 ;Form 25 to 60 micron flux ratio
list = list(where ((ratio gt 0.25) and ;Ratio to select for AGNs

(ratio 1t 3.0)))
dbext,list, ‘ra,dec’,ra,dec ;Extract RA and DEC vectors
euler,ra*15.,dec,1l,b,1 ;Convert to galactic coordinates

list = list(where ((b gt 30) or (b 1t -30)) ;Select high galactic latitude objects
)

dbprint,list, ‘name,bmag, ;Print name and TRAS fluxes of selected
12 flux,25 f1ux,60 flux,100 flux sources

The above sequence of commands above will run slowly because the 25 _fqual, 60_fqual items
are not indexed, and because not all the desired search items (e.g. galactic coordinates) are in
the database. Should similar searches of the IRAS catalog be required often, then the database
manager should include and index the desired items.

3 Advanced Databasing

3.1 DBCIRCLE

DBCIRCLE can be used to search a catalog for all sources within a specified radius of a given
position. For example, suppose one wants to determine if any quasars are within the 20" UIT field

of the star AE Aqr (JOTFID number 3226).

dbopen, *PTL’ ;Open the ASTRO Program Target List

1 = dbfind(’jot£id=3226") ;Get entry number of JOTFID 3226

dbext,l,’ra,dec’,ra,dec ;Extract the Ra and Dec of this star

dbopen, ’quasars’ ;Open Hewitt and Burbidge (1989) Quasar
catalog

list = dbcircle(ra,dec,20,dis) ;Find sources within 20’ of given RA and Dec

DBCIRCLE will display that 3 entries were found in the quasar catalog, and place the entry values
in the vector 1ist. The vector dis contains the distance (in arc minutes) of each quasar found to
the specified field center.

3.2 DB_OR

The DB_OR function concatenates the entries found in two different lists, while removing duplicates.
For example, suppose one wants to identify the Astro targets that are either WUPPE or HUT
targets. The command

list = dbfind(’H=H,W=W’)

will identify targets that belong to both HUT and WUPPE. To find targets that belong to either
instruments, one must perform two searches and concatenate the results.

listl = dbfind(‘H=H’) ;Get entry numbers of HUT targets
list2 = dbfind(‘W=W’) ;Get entry numbers of WUPPE targets

list = db_or(listi,list2) ;Combine entry vectors and remove duplicates
Of course, IDL allows one to combine the three steps above into a single step:

list = db_or(dbfind(‘H=H’), dbfind(‘W=W’))

3.3 Sorting

Up to this point all results were printed in the order stored in the database (by entry number).
The procedure DBSORT will sort an entry list on up to nine sort items. Its calling sequence is

SORTLIST = DBSORT(LIST, ‘iteml,item2 ...’)

where LIST is the input list of entry numbers and SORTLIST is the sorted list. Iteml is the
primary sort item, item2 the secondary, and so on. For example, the following statements will
produce a printout of all IUE high-dispersion observations of the nuclei of of planetary nebulae,
(object class 70) sorted by right ascension:

dbopen, ‘IUE’ ;Open the IUE catalogue

list = dbfind(‘obj.class = 70,disp=h’) ;Specify object class, dispersion mode

sortlist = dbsort(list, ‘ra,image’) ;Primary sort is by RA | secondary by image
number

dbprint,sortlist, ;Print selected items

‘object,ra_1950,dec_1950,camno, image’

3.4 DBGET

Suppose one has a list of five IUE SWP images, and wishes to obtain information about the
observational parameters. DBFIND can be used to find the entry numbers

list = dbfind(‘camno=3,image=[3427,15191,20227,29992,30022] ")

The SWP camera is camera number 3, and the individual images are identified. For a larger number
of images, however, this use of DBFIND breaks down. It is awkward to write each image value in
a string, and, in fact, DBFIND can only parse 10 individual values. What is needed is a function
that can search on values in an IDL vector, and this is why DBGET was created.

images = [3427,15191,20227,29992,30022] ;Values are in an IDL vector
list = dbfind(‘cammno=3’) ;Restrict search to SWP camera
list = dbget(‘IMAGE’,images,list) ;Search on “images” vector

One limitation of DBGET is that it can only be used with one item at a time. Be aware that the
number of entries returned by DBGET might not equal the number of values in the search vector; if,
for example, an image number is missing, or appears twice (e.g. as both large and small aperture).
The function DBMATCH should be used if a one-to-one correspondence is desired between the
elements of the search item vector and the found entries.

3.5 DBMATCH

Suppose one wants to find the Gliese catalog number of every star in the Yale Bright Star catalog.
Both these catalogs contain an HD item, so one can extract the HD numbers from the Yale Bright
Star Catalog, and then use this vector to search for entries in the Gliese catalog.

dbopen, ‘YALE BS’ ;Open the Yale Bright Star Catalog
dbext,-1, ‘HDNO’,hd ;Extract the HD number for all stars

dbopen, ‘GLIESE’ ;Open the Gliese Catalog of Nearby Stars

gl = dbmatch(‘HDNO’,hd) ;Find Gliese numbers of specified HD numbers

The output vector gl will contain 9110 elements — one for each entry in the Yale Bright Star catalog.
Stars not in the Gliese catalog will contain a value of 0 in the gl vector. DBGET could be used to
find all the Gliese numbers of stars in the Yale Bright Star catalog, but it would not keep track of
which Gliese number went with which star. DBMATCH is slower than either DBFIND or DBGET
because it must loop over each element of the item search vector. However, DBMATCH is very
useful for building a “pointer” from one catalog to another.

3.6 Pointers

It often happens that the entries in two different catalogues can refer to the same object. It is then
possible to open both catalogues simultaneously, and for the entry in catalogue 1 to “point” to the
entry in catalogue 2 corresponding to the same object. The user can then print, or search on, items
from either catalogue. For example, suppose one wants a printout of comments that have been
written about the ASTRO targets, along with the names of the instrument(s) associated with each
target. The comments are given in the PTLCOM database, while the instruments are given in the
PTL database.

dbopen, ’PTL,PTLCOM’ ;Open both the PTL and the PTLCOM
databases

list = dbfind(’flag.com’) ;Item is non-zero when comments exist

dbprint,list,’jotfid,id1,h,w,u,b,lcomm’ ;Print instrument and comments

Use DBHELP to learn if one catalogue points to any others. You cannot simultaneously open
databases which do not have pointers already built in by the database manager.

4 Creating and Modifying a Database

4.1 Introduction

A database actually consists of four disk files, each identified with a unique 3 letter extension.
For example, the PTL database consists of the four files, PTL.DBD, PTL.DBH, PTL.DBF, and
PTL.DBX. The .DBD file is an ASCII file that contains all the item definitions, print formats,
pointers etc. The .DBH file contains a list of all items and item titles stored in binary format for
quick access. The .DBF file contains all the data stored in binary in entry order. Finally, the .DBX
file contain the values of all the indexed items stored in binary in item order. The table below

10

summarizes the four database files.

.DBF | DataBase File Binary | Row-ordered data

.DBH | DataBase Contents | Binary | Title and item descriptions

.DBX | DataBase indeX Binary | Indexed and sorted data

.DBD | DataBase Definition | ASCII | User-supplied item characteristics

In addition to these four files, the user can create ASCII help files as necessary. For ex-
ample, the file YALE_BS.HLP will be printed when no database has been opened and the user
types dbhelp,’yale bs’. The file YALE_BS DBLE_NAME.HLP will be printed if the YALE_BS
database has been opened, and the user types DBHELP, ‘DBLENAME’. A final optional file for a
database is an ASCII file with the extension ITEMS. This file lists the default print items (one
per row) to be used when the user types DBPRINT,LIST.

The steps a user must follow to create a database are as follows:

o Define the logical name (VMS) or environment variable (UNIX) ZDBASE to point to the
directories containing the catalogues. To identify where existing database files are located,
type $sho logical zdbase (VMS) or printenv ZDBASE (Unix).

o Create a database definition .DBD file using a text editor
¢ Use DBCREATE to create the .DBH file, and empty versions of the .DBX and .DBF files

¢ Fill the .DBX and .DBF files with data usually using the DBBUILD procedure. Alternatively,
entries can be written one at a time into the .DBX file with DBWRT, and the .DBX file can
filled using DBINDEX.

4.2 The .DBD file

The critical step in creating a database is making the database description (.DBD) file. Reproduced
in full below is a .DBD file for a data base that will be called EXAMPLE.

EXAMPLE.DBD
sokosk ok ok sk ook sk ok ok skok ok ook sk oo ok kot ok skok ok skok ok

#title

Example of a Database catalogue

#maxentries
1356

#items

CAT_NO I*2 Catalogue Number

BS_NO I*4 Bright Star Number

RA_1950 C*10 RA (1950)... Use RA for search
DEC_1950 C*9 Dec (1950)... Use Dec for search

11

FLUX(61) R*4 Flux (x 10[-10]), 1380A - 2740A)

RA R*4 RA (hours)
DEC R*4 Dec (degrees)
#formats

ENTRY 16 Entry
CAT_NO 14 TD1,No
BS_NO 16 Bright,Star,No

RA_1950 A10 RA,(1950)
DEC_1950 A10 Dec,(1950)

#index

CAT_NO index
BS_NO sort/index
RA sorted
DEC sort
#pointers

BS_NO yale_bs

sokosk ok ok sk ook sk ok ook sk ok ok skok ok skok sk ook sk ook sk ok ok

A DBD file contains several “block” headers identifiable by a preceding pound sign “#”. The
#title and #items blocks are required, the #maxentries and #formats blocks are strongly recom-
mended, while the #index and #pointers blocks are optional.

#ttitle Underneath the #title header should be a one line description (50 characters or less) of the
database that will be displayed with DBHELP. The actual name of the database (to be used
with DBOPEN) is the same as the name of the .DBD file.

#maxentries Underneath the #maxentries header should be a single number giving the maximum
number of entries one expects to be in the database. The only cost in making the value of
#maxentries too large is that extra disk space will have to be allocated for the index files.
On the other hand, if the value of #maxentries is less than the actual number of entries, then
you will not be able to create the index file.

#items This required block contains three columns of information. The first column contains the
name of every item. Multiple valued items should have the number of values per entry put
in parentheses next to the item name. The second column gives the datatype of every item.
Acceptable values of datatype include R*4, T*2, T*4, R*8, L*1 or B*1. The datatype of a
string item should be written as C*[n] where [n] is the string length. The last column gives
a brief description of the item that will be used with DBHELP.

#formats This block lists the item name, print format, and print heading. If an item is not listed
here, then it is given the default IDL print format for its datatype (e.g. I7 for I*2 data), and
the item name is used for the print heading. Fach print heading consist of three rows, so that
a heading can consist of up to three words separated by commas. However, each word must

12

fit into the space allocated by the print format; e.g. a heading for the item BS_NO (format
16) will be truncated after 6 characters.

#index This block lists the indexed items and their index types. Multiple valued items cannot be
listed here since they are not allowed to be indexed. There are four acceptable index types;
“index”, “sorted”, “sort”, and “sort/index”. The values of an “index” item are copied in
entry order to the index file; this allows the values to be extracted quickly. The values of
a “sort” item are copied to the index file in numeric order (i.e sorted), along with a lookup
table relating the numeric order to the entry order. “Sort” items can therefore be searched
very quickly. ‘Sorted’ items are assumed to have entry order already coincident with numeric
order, and the “sorted” index should be used whenever it is allowed. For example, some
catalogs are listed by increasing right ascension, which would allow RA to be a “sorted” item.
String items are not allowed an index type of “sort” or “sorted”. Finally, the values of a
“sort/index” item are copied in both entry order and numeric order to the index file. This
type is mainly used for items which are used to “point” at another database (see below).
The following table summarizes the relative disk space and search speed of the different index

Index Disk | Search Extraction | Comment
Type Space | Speed Speed
None 1 Slow Slow

types. | Index 2 Moderate | Fast
Sorted 3 Very Fast | Fast Item must be in entry order
Sort 4 Fast Slow String items not allowed
Sort/Index | 5 Fast Fast String items not allowed

#pointers The #pointers block contains the names of items that point to the entry numbers of
another catalogue. In our example, BS_NO points to the entry number in the Yale Bright
Star catalogue. Item that serve as pointers must be either index type “index”, “sort/index”
or the item ENTRY.

4.3 Adding or Modifying Data

Once a database description (.DBD) file has been created, adding and modifying data is relatively
easy. The procedure DBCREATE is used to create the contents (.DBH) file, and optionally, new
copies of the data (.DBF') and index (.DBX) file. Its basic calling sequence is

DBCREATE, ¢ <DATABASE NAME>’, [NEWINDEX ,NEWDB]

where NEWINDEX is non-zero to create a new .DBX file, and NEWDB is non-zero to create a new
.DBF file. DBCREATE requires that the user set the system variable !PRIV=2: this is to prevent
novice users from accidently corrupting the database.

It assumed that the user has been able to read the data into IDL vectors. (The procedures
READCOL and READFMT are extremely useful for reading raw data from ASCII files into IDL
vectors.) For example, to create the EXAMPLE database from the previous section, the user should
have vectors named, say, CAT,BS,RA_1950,DEC_1950,FLUX,RA, and DEC corresponding to each
of the items. The database must then be opened for update by adding a second parameter to the
DBOPEN command. It is also necessary for the user to have sole access to the database; an error

13

message will result if one tries to update a database while another user is reading it. Finally, the
database is loaded with the procedure DBBUILD as follows:

IPRIV=2 :Set PRIV to create or modify database files
dbcreate, ‘EXAMPLE’ ,1,1 ;Need new index and data files
dbopen, ‘EXAMPLE’,1 ;Open the database for update

dbbuild,cat,bs,ra 1950,dec_1950,flux, ra,dec ;Load IDL vectors into database

To modify the item titles or print formats in an existing database, one simply edits the .DBD file
with the new information, and then types DBCREATE. There is no need to create new .DBX or .DBF
files. If, however, one wants to change the index type of an item or set of items, then a new .DBX
file must be created and built with DBINDEX.

IPRIV=2 ;As always

dbcreate, ’EXAMPLE’ , 1 ;Create a new index file
dbopen, 'EXAMPLE’ ,1 ;Open database for update
dbindex ;Make the index file

There are several ways to append or modify the actual data in a database. To append new entries,
the DBBUILD command can again be used, but without first calling DBCREATE, since the data
in the existing .DBX and .DBF files must remain. The procedure DBUPDATE can be used to load
new item values into a database. DBUPDATE can be viewed as the inverse of DBEXT — instead
of extracting item vectors, it will insert them. For example, suppose the RA and DEC items are
in 1900 equinox, and one wants to convert them to 1950 equinox.

IPRIV=2 & dbopen,’EXAMPLE’,1 ;Ultimately, will update database
dbext,-1,’RA,DEC’,ra,dec ;Extract RA and Dec vectors

ra = ra*15. ;Convert to degrees
precess,ra,dec,1900,1950 ;Convert to 1950 equinox
dbupdate,-1,’RA,DEC’ ,ra/15. ,dec ;Load new values of RA and Dec

Finally, the procedure DBEDIT is useful for editing individual item values. For example,
suppose a database has values of V_.MAG set to 99.9 whenever the visual magnitude was unknown.
Once these values become known they can be inserted by hand into the database:

IPRIV=2 & dbopen,’EXAMPLE’,1 ;Open for update
list = dbfind(’V.MAG=99.9’) ;Get entry numbers with bad V_.MAG
dbedit,list,’V.IMAG’ Interactive editing of selected entries

DBEDIT will display the existing value of an item, and prompt the user whether to keep or replace
it.

5 APPENDIX: ONLINE CATALOGS

This appendix lists some of the more important on-line catalogues. Use DBHELP to obtain a more
complete and up-to-date listing.

14

ASTRO/UIT Catalogues

Galactic Globular Cluster Database
ASTRO TIPS Actual Science Observations
ASTRO May 9 Joint Science Plan
ASTRO May 9 Mission Target List
ASTRO Program Target List

ASTRO Target List Comments File

2nd Reference Catalog of Galaxies

ST Guidestars in UIT fields

Virgo Cluster Multibandpass Database
UIT Filter Sequence Database

of Entries

121
314
626
718
1,184
334
4,364
41,948
228
89

15

Name

GLOB
IPSREAL
JSCIPLAN
MTL

PTL
PTLCOM
RC2
GUIDESTAR
VIRGO_UIT
UITSEQ

General Catalogues and Databases

ANS UV Catalogue
Copernicus far-UV spectra
Dorman Horizontal Branch Models (1992)
EUVE Bright Source List
Gliese Catalog of Nearby Stars
Preliminary 3rd Edition (1991)
Catalogue of HST observations
IRAS Small Scale Stucture Catalog
IRAS Point Source Catalogue
ITUFE Merged Log Catalogue
Kurucz Model Atmospheres (1992)
Library of Stellar Spectra (Jacoby 1984)
Brightest Stars in M31 field (1988)
OB stars in M33 (Wilson 1991)
New General Catalog (NGC) objects (1988)
Catalogue of Principal Galaxies (Paturel et al. 1989)
Quasars and AGN 5% ed.
Veron-Cetty and Veron (1991)
Catalog of Quasars and BL Lac Objects
Hewitt and Burbidge (1989)
CFA Redshift Survey
ROSAT Wide Field Camera Bright Source List
SAO/CFA Star Catalogue
Seyfert Galaxies (Weedman 1977)
Stellar Evolution Sequences
Schaller et al. (1992)
SKYMAP V3.5 (1989)
Sweigart (1987) Horizontal Branch Models
TD-1 UV Photometry Catalogue
TD-1 Spectrophotometry Catalogue
Ultraviolet Spectral Synthesis
Library (Fanelli et al. 1987)
Virgo Cluster Catalog (Binggeli 1987)
Catalogue of White Dwarfs
McCook and Sion (1987)

IUE spectra of white dwarfs (Wegner & Swanson 1991)

Yale Bright Star Catalogue
Preliminary 5th Edition (1991)
Yale Bright Star (Remarks)

16

of Entries

3,573
40

51
356
3,802

24,239
16,740
255,578
95,944
6,455
161
20,216
3,005
13,226
73,197
8,000

4,383

31,224
384
255,988
121

50

248,563
120
31,114
1,356
15

2,096
1,282

184
9,110

8,300

Name

ANS
COPERNICUS
DORMAN
EUVE
GLIESE

HST_CATALOG
IRAS_SS5
IRAS_PSC

IUE

KURUCZ

LSS

M31STARS
M33STARS
NGC2000
PRIN_GAL
QUASAR_AGN5

QUASARS

REDSHIFT
ROSAT _WFC
SAO
SEYFERT
MAEDER

SKYMAP
SWEIGART
TD1
TD1SPEC
UV_SPEC_LIB

VIRGO
WDWARF

WDWARF_IUE
YALE_BS

YALE_BS_RMKS

